Erdbeben als Motor für den Kohlenstoffkreislauf in der Tiefsee

Veröffentlicht von
Share Button

Ein internationales Team um den Geologen Michael Strasser hat mit neuen Methoden Sedimentablagerungen im Japangraben analysiert, um neue Erkenntnisse über den Kohlenstoffkreislauf zu gewinnen.

In einer soeben in «Nature Communications» erschienenen Publikation präsentiert der Geologe Michael Strasser erste Erkenntnisse einer einmonatigen Forschungsexpedition vor Japan, die im März 2012 vom «MARUM – Zentrum für Marine Umweltwissenschaften» organisierte wurde. Strasser, bis 2015 Assistenzprofessor für Sedimentdynamik an der ETH Zürich und aktuell Professor für Sedimentgeologie an der Universität Innsbruck, untersuchte vor Ort mit einem internationalen Team dynamische, durch Erdbeben ausgelöste Verteilungs- und Umschichtungsprozesse von Sedimenten.

Das Forschungsschiff RV Sonne, von welchem aus 2012 die Sedimentproben aus dem Japangraben gebohrt wurden. (Bild: RF Forschungsschiffahrt Bremen/Germany)

Die Forschenden entnahmen auf einer Tiefe von 7542 Meter unter Meer einen Bohrkern aus dem sogenannten Japangraben, einer 800 km langen Tiefseerinne im nordwestlichen Teil des Pazifischen Ozeans. Der Japangraben ist seismisch aktiv. Dort ereignete sich unter anderem das Tohoku-oki-Erdbeben von 2011, das vor allem aufgrund der Nuklearkatastrophe von Fukushima Schlagzeilen machte. Bei solchen Erdbeben werden enorme Mengen an organischem Material vom flachen Wasser in die Tiefsee gespült. Die so entstandenen Sedimentschichten geben deshalb später Aufschluss über die Geschichte von Erdbeben und den Kohlenstoffkreislauf in der Tiefsee.

Neue Methoden für Altersbestimmungen in Tiefsee

Michael Strasser (rechts), damals Assistenzprofessor an der ETH Zürich, und der Expeditionsleiter Gerold Wefer, Professor am MARUM und der Universität Bremen, beraten an Bord der RV Sonne über den Bohrkern. (Bild: V. Diekamp, MARUM, Universität Bremen)

Mit der aktuellen Studie gelang den Forschenden ein Durchbruch. Sie analysierten die kohlenstoffhaltigen Sedimente nämlich mittels Radiokarbonmethode. Zwar wird die Bestimmung des Gehalts an organischem Kohlenstoff sowie die Messung von radioaktivem Kohlenstoff (14C) an mineralisierten Verbindungen in einzelnen Ablagerungsschichten schon lange zur Altersbestimmung von Sedimenten eingesetzt. Doch bislang war die Analyse von Proben aus mehr als 5000 Metern unter Meer nicht möglich, weil sich unter zunehmendem Wasserdruck die mineralisierten Verbindungen auflösen.

Strasser und sein Team mussten deshalb neue Methoden für die Analytik einsetzen. Unter anderem kam die sogenannte Online-Gas-Radiokarbonmethode zum Einsatz, die ETH-Doktorand Rui Bao und die Biogeoscience-Gruppe der ETH Zürich entwickelt hatten. Damit können für einen einzigen Bohrkern höchst effizient mehr als hundert 14C-Altersbestim­mungen direkt an der im Sediment enthaltenen organischen Substanz durchgeführt werden.

Die Forschenden wendeten zudem erstmals die Methode der «Ramped PyrOx»-Messungen (Pyrolyse) für die Datierung von Sedimentschichten aus der Tiefsee an. Dies gemeinsam mit dem amerikanischen «Woods Hole Oceanographic Institute», welches die Methode entwickelt hat. Dabei wird organisches Material bei unterschiedlichen Temperaturen verbrannt. Da ältere organische Materialien stärkere chemische Verbindungen aufweisen, sind bei ihrer Verbrennung höhere Temperaturen erforderlich. Die Neuigkeit besteht darin, dass die relativen Altersabweichungen der einzelnen Temperaturfraktionen zwischen zwei Proben die Altersunterschiede zwischen Sedimentschichten in der Tiefsee sehr genau eingrenzen.

Erdbeben datieren für genauere Prognosen

Über diese beiden methodischen Innovationen liess sich das relative Alter der organischen Substanz in den einzelnen Sedimentschichten äusserst exakt bestimmen. Der untersuchte Bohrkern weist an drei Stellen älteres organisches Material sowie erhöhte Raten der Kohlenstoffzufuhr in die Tiefsee auf. Diese Stellen entsprechen den drei historisch dokumentierten, jedoch bislang ungenau datierten, Erdbebenereignissen im Japangraben: das Tohoku-oki-Erdbeben von 2011, ein unbenanntes Erdbeben von 1454 und das Jogan-Erdbeben von 869.

Aktuell arbeitet Strasser an der grossflächigen geologischen Aufzeichnung der Herkunft und Häufigkeit von Sedimenten in Tiefseegräben. Dazu analysiert er mehrere, während einer Folgeexpedition im Jahr 2016 entnommene Bohrkerne aus dem Japangraben. «Die Identifizierung und Datierung erdbebenbedingter Ablagerungen ist auch für künftige Prognosen über die Wahrscheinlichkeit von Erdbeben wichtig», sagt Strasser. «Denn aufgrund unserer neuen Methoden können wir die Wiederkehrrate von Erdbeben wesentlich genauer bestimmen.»

Veröffentlichung:
Bao R, Strasser M, McNichol A, Haghipour N, McIntyre C Wefer G, Eglinton T: Tectonically-triggered sediment and carbon export to the Hadal zone. Nature Communications, 9. Januar 2018, doi: 10.1038/s41467-017-02504-1

Quelle: off. Pn. der ETH Zürich

Ähnliche Beiträge
Ein Wissenschaftler der Washington State University hat herausgefunden, dass ein Viertel des im Boden enthaltenen
Diamanten haben nicht nur als Juwelen, sondern auch für die Geoforschung einen einzigartigen Wert. Sie
Das Element Kohlenstoff und seine Verbindungen bilden die Grundlage für irdisches Leben. Kurzzeitige Aufheizprozesse im
Auch alte Bäume nehmen viel Kohlenstoff auf und entziehen der Atmosphäre damit CO2 (Kohlendioxid). Dies
Forscher haben festgestellt, dass die Bildung und Trennung von Superkontinenten über Hunderte von Millionen Jahren
The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.