Zwergdünen schreiben Klimageschichte

Veröffentlicht von
Share Button

Bläst der Wind Sandkörner durch die Wüste, entstehen zentimeterkleine Rippel und gewaltige Dünen. Wie es zur Entstehung von sogenannten Megarippeln zwischen diesen beiden Extremen kommt, war bislang ungeklärt. Wissenschaftler der Universität Leipzig und der Ben-Gurion University of the Negev in Israel haben das in gemeinsamen Forschungen herausgefunden. Sie konnten auch klären, wie man aus der Struktur und Dynamik von Megarippeln und verwandten Formationen auf dem Mars Rückschlüsse auf die Klimageschichte ziehen kann.

Unerwartete Verwandtschaft: Megarippel (vorne) und Sanddünen (hinten)
(Foto: Dr. Hezi Yizhaq)

Sandwüsten sind alles andere als glatt. Ähnlich wie auf Wasseroberflächen erzeugen turbulente Winde kleine Rippel und deutlich größere Wellen, sogenannte Dünen. Einem internationalen Team von Geomorphologen und Physikern ist es nun gelungen, den Mechanismus einer dritten Klasse von Sandwellen zu klären.

“Diese eigentümlichen ‘Megarippel’, die aussehen wie große Rippel, entzogen sich bisher hartnäckig allen Erklärungsversuchen und sogar einer systematischen phänomenologischen Charakterisierung”, sagt Prof. Dr. Klaus Kroy vom Institut für Theoretische Physik der Universität Leipzig, der federführender Autor der Veröffentlichung ist. Erst eine grundsätzlich neue Betrachtungsweise, die die vermeintlichen Riesenrippel als Minidünen interpretiert, bringe nun Ordnung in die Daten und eröffne neue Möglichkeiten für geomorphologische Analysen und Anwendungen in der Fernerkundung. “Mit diesem Schlüssel könnte es nun auch gelingen, die in diese Sandformationen eingeschriebene Klimageschichte zu entziffern”, erklärt Kroy.

Dünenmeer von oben

Die Hintergründe werden verständlich, wenn man die Besonderheiten der Entstehung der Megarippel genauer unter die Lupe nimmt: Turbulenter Wind erzeugt nicht nur Wellen im Sand, sondern sortiert zugleich auch dessen Körner nach ihrer Größe. Feine Körnchen fliegen weiter, gröbere bleiben zurück. Daher enthalten gewöhnliche Dünen, deren Sand über viele Kilometer vom Wind transportiert wurde, normalerweise fast nur Sandkörner identischer Größe. Dagegen finden sich in Megarippeln sehr unterschiedliche Korngrößen. Besonders in Erosionsphasen werden die feinen Körner schnell abgetragen, und die gröberen sammeln sich allmählich an der Oberfläche des Sandbettes. Dann setzt ein spezieller Transportvorgang ein: Einschläge hochfliegender feiner Sandkörnchen können die gröberen Körner in winzigen Schritten vorwärts treiben. Deren drastisch verringerte Sprunglänge bedingt aber eine gleichermaßen reduzierte Größe der entstehenden Dünen. Es entstehen Minidünen.

Die Autoren belegen die neue Interpretation von Megarippeln als grobkörnige Zwergdünen auch durch markante morphologische und dynamische Ähnlichkeiten von Megarippeln und normalen Sanddünen. Diese waren offenbar wegen des enormen Größenunterschieds bislang niemandem aufgefallen. “Eine wichtige Schlussfolgerung aus unserer Arbeit ist, dass Megarippel außerordentlich sensibel auf Schwankungen der vorliegenden Korngrößenverteilung und der vorherrschenden Windstärke reagieren”, erläutert Marc Lämmel, der Erstautor der Studie. Das erkläre, warum Megarippel bei schwachem Wind nicht wachsen und durch Stürme schnell abgetragen werden.

Was bisher nur als Hindernis für systematische Feldstudien galt, erweise sich nun als interessante Eigenschaft: Megarippel sind daher vorzügliche Archive vergangener Segregations- und Wachstumsphasen. “Ähnlich wie Jahresringe von Bäumen müsste die Schichtung der Körner beispielsweise in versteinerten oder extraterrestrischen Megarippeln Klimageschichte erzählen. Die vollständige Entzifferung der Sprache des Sandes dürfte zwar noch etwas Mühe bereiten, aber schon der nächste Strandaufenthalt bietet eine gute Gelegenheit, damit anzufangen”, sagt Kroy.

 Veröffentlichung in “Nature Physics”: “Aeolian sand sorting and megaripple formation”, Marc Lämmel, Anne Meiwald, Hezi Yizhaq, Haim Tsoar, Itzhak Katra, and Klaus Kroy

DOI:10.1038/s41567-018-0106-z

Quelle: off. Pn der Universität Leipzig

Ähnliche Beiträge
Der zentrale Teil der Atacama-Wüste gilt als eine der trockensten Regionen der Erde. Dennoch sind
Forscher der NASA haben acht Stellen gefunden, an denen dicke Eisvorkommen unterhalb der Marsoberfläche an
Meteoriteneinschläge haben die Oberfläche des Mars über Milliarden Jahre verändert. Die aktuellen Bilder der vom
Eine Forschergruppe der Universität Bayreuth hat die langgesuchte Erklärung für den scheinbar widersprüchlichen Aufbau von
Anfang 2017 ist es Winter in der Nordhemisphäre des Mars. Ein neu erstelltes Farbmosaik zeigt
The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.