Rätsel um harte Perlmutt-Muschelschalen geknackt

Share Button

Perlmutt fasziniert den Menschen seit jeher. Es gibt Muschelschalen ihr schillerndes Aussehen und schützt das Tier vor Fressfeinden und anderen Bedrohungen. Seit über 80 Jahren rätseln Wissenschaftler, woher die außergewöhnliche Härte von Perlmutt stammt – schon lange wird es als eines der zähesten Materialen der Welt gepriesen. Nun hat ein internationales Team aus den Bereichen Material- und Geowissenschaften sowie Biologie der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), der University of Michigan, der Macquarie University in Sydney und der Université Bourgogne Franche-Comté das Geheimnis gelüftet.

Forschende kennen die Grundlagen von Perlmutt seit Jahrzehnten – es besteht aus mikroskopisch kleinen „Ziegelsteinen“ eines Minerals namens Aragonit, das aus einfachem Kalk besteht, und einem „Mörtel“ aus organischem Material. Diese Anordnung verleiht zwar generell Festigkeit, aber Perlmutt ist weitaus widerstandsfähiger als seine einzelnen Komponenten vermuten lassen. In ihrem Experiment übte das Team unter einem Elektronenmikroskop auf die Schalen Druck aus und beobachte in Echtzeit, was passierte: Die Struktur verformte sich komplexer als gedacht.

Künstlerische Darstellungen der Nanostrukturen von Perlmutt (links), prismatischem Calcit (Mitte) und monolithischem Aragonit (rechts). Die Außenseite der Muschelschalen besteht hauptsächlich aus prismatischem Calcit, während der Perlmutt hauptsächlich aus Aragonit besteht. (Bildnachweis: Hovden Lab)

„Zentral für die von uns beobachteten Eigenschaften ist eine Kompositstruktur auf der Nanoskala, die das keramische Material Kalk eng mit Proteinen und anderen organischen Bestandteilen verwebt. Das gelingt der Muschel, indem sie kleinste Kalkpartikel zu Plättchen zusammenlagern lässt, ein Prozess, den wir derzeit genau untersuchen, um die fabelhaften Eigenschaften eines Tages auch synthetisch abbilden zu können“.

erklärt Prof. Dr. Stephan Wolf, Juniorprofessor für Biomimetische Materialen und Prozesse am Lehrstuhl für Glas und Keramik der FAU.

Bildlich gesprochen funktioniert das so: Die „Ziegelsteine“ sind tatsächlich mehrseitige „Plättchen“, die nur wenige hundert Nanometer groß sind. In der Regel bleiben diese Plättchen getrennt, in Schichten angeordnet und von einer dünnen Schicht organischen „Mörtels“ gepolstert. Bei Belastung der Muschelschalen wird der „Mörtel“ jedoch beiseite gequetscht, die „Plättchen“ verhaken sich so sehr, dass sie gemeinsam die Belastung tragen und so daran nicht zerbrechen. Wird der Druck weggenommen, springt die Struktur in ihre alte Form zurück, ohne an Festigkeit oder Elastizität zu verlieren. Diese Eigenschaft ist außergewöhnlich, denn: Selbst die fortschrittlichsten Materialien, die von Menschen entworfen wurden, können das nicht. Kunststoffe können beispielsweise durch einen Aufprall zurückspringen, verlieren jedoch jedes Mal etwas an Festigkeit. Perlmutt hingegen verlor in den Experimenten bei wiederholten Schlägen kaum etwas von seiner Widerstandsfähigkeit.

„Es ist unglaublich, wie eine Muschel – die nicht gerade für ihre Intelligenz gerühmt wird – so ein komplexes Material generiert, das über viele Längenskalen strukturiert ist”.

sagt Prof. Hovden von der University of Michigan und Leiter der Studie.

Ihre Ergebnisse erlauben es Materialwissenschaftlern, eine neue Generation von bruchfesten keramischen Materialien zu entwickeln, die widerstandsfähig auf Belastungen reagieren, Anforderungen wie sie für Alltags- oder Spezialanwendungen in der Medizintechnik auftreten, wie zum Beispiel für Zahn- und Knochenimplantate.


Veröffentlichung: Gim, Jiseok, Noah Schnitzer, Laura M. Otter, Yuchi Cui, Sébastien Motreuil, Frédéric Marin, Stephan E. Wolf, Dorrit E. Jacob, Amit Misra, and Robert Hovden. 2019. “Nanoscale Deformation Mechanics Reveal Resilience in Nacre of Pinna Nobilis Shell.” Nature Communications 10 (1): 4822. https://doi.org/10.1038/s41467-019-12743-z.

Quelle: off. PM der FAU

Titelbildunterschrift: Screenshot aus Video. (Video by University of Michigan)


Ähnliche Beiträge
Das kupferhaltige Mineral Malachit aus der Mineralklasse der Karbonate wurde zum diesjährigen Mineral des Jahres
Im Meerwasser schwebende Tonmineralien binden Kohlenstoff des Sediments an ihre Mineraloberflächen. Die Menge an gebundenen
Wie ist das Innere der Erde chemisch aufgebaut? Um das herauszufinden, haben sich Geochemiker der
Ein Team von Forschern des California Institute of Technology, der University of California und des
Der Ursprung gigantischer Magmaausbrüche, die zu globalen Klimakrisen und Artensterben führten, ist nach wie vor
The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.