Der Feuerring der Venus

Print Friendly, PDF & Email
Share Button

ETH-​Forschende klassifizierten mithilfe von Computersimulationen die heutigen Aktivitäten von Coronae-​Strukturen auf der Oberfläche der Venus – und finden zu ihrer Überraschung einen bis dato unentdeckten Feuergürtel auf unserem Nachbarplaneten.

Auf der Oberfläche der Venus entdeckten Planetenforscher schon vor Jahren auf hochauflösenden Bildern der Nasa-​Mission «Magellan» eigenartige ringförmige Strukturen. Coronae (lat. Kronen; Einzahl: Corona) werden diese genannt, und ETH-​Forschende um Taras Gerya, Professor für Geophysik am Departement Erdwissenschaften, erforschten vor einigen Jahren mithilfe von Computermodellen, wie diese Strukturen entstanden sein könnten.

Bis heute gehen die meisten Forschenden davon aus, dass sogenannte Mantelplumes, die tief aus dem Inneren des Planeten aufsteigen, die kreisförmigen Strukturen an der Oberfläche hervorbringen.

Mantelplumes sind Säulen aus heissem, geschmolzenen Gestein, das durch Konvektionsbewegungen im unteren Mantel bis zur Kruste gelangt. Dort breitet sich der oberste Teil der Säule pilzförmig aus. Die mitgeführte Hitze schmilzt die darüberliegende Kruste kreisförmig auf. Kontinuierlich aus der Tiefe emporsteigendes Material verbreitert den Kopf des Plume und weitet die Ringstruktur auf der Oberfläche aus – eine Corona entsteht. Die harte Kruste, welche den Mantelplume umgibt, zerbricht und taucht schliesslich unter den Rand der Corona ab, was lokal tektonische Prozesse in Gang setzt.

Globale Verteilung von Coronae (Durchmesser > 300 km), die als inaktiv (weisse Kreise), aktiv (rote Kreise) oder unklassifiziert (graue Kreise) identifiziert wurden. (Ill.: s. Veröffentlichung)

Coronae-​Vielfalt mit dem Computer simuliert

Doch die Topografie von Coronae sind mitnichten homogen oder einfach zu beschreiben. «Auf der Venus-​Oberfläche kommen solche Strukturen in einer grossen Vielzahl von Formen und Grössen vor», sagt Anna Gülcher, Doktorandin in Geryas Forschungsgruppe.

Mithilfe eines grösseren Satzes von verbesserten 3D-​Simulationen hat Gülcher die Coronae deshalb erneut untersucht, um die Vielfalt der Oberflächentopografie mit darunter ablaufenden Prozessen zu verknüpfen. Ihre Studie ist soeben in der Fachzeitschrift «Nature Geoscience» erschienen.

Die neuen Simulationen zeigen, dass die Topografie einer Corona davon abhängt, wie dick und stark die Kruste an der Stelle ist, an welcher ein Mantelplume auftrifft. Dabei ging klar hervor, dass die Coronae-​Topografien davon abhängen, wie aktiv die darunterliegende Magmasäule ist.

Entwicklung eines Corona-bildenden Modells, das eine durch eine Plume-induzierte lithosphärische Abspaltung einer schwachen Lithosphäre beinhaltet. (Ill.: s. Veröffentlichung)

Aktive Plumes bilden Feuerring der Venus

Diese Unterscheidung erlaubte es der Forscherin und ihren Kollegen, über hundert grosse Coronae der Venus in zwei wesentliche Gruppen einzuteilen, nämlich solche, unter denen derzeit ein aktiver Plume aufsteigt und geschmolzenes Material mitführt, und jene, unter denen der Plume erkaltet und inaktiv geworden ist. «Jede Corona-​Struktur hat eine spezifische Signatur, die anzeigt, was darunter vor sich geht», sagt Gülcher.

Alle aufgrund ihrer Aktivität eingeteilten Coronae trug die Forscherin auf einer Venus-​Karte ein. Zu ihrer Überraschung konnte sie die meisten der Strukturen, die über aktiven Mantelplumes liegen, auf einem Gürtel in der unteren Hemisphäre der Venus verorten. Nur wenige aktive liegen ausserhalb dieses Bandes. Gülcher: «Wir nannten es deshalb in Anlehnung an den ‘Pazifischen Feuerring der Erde’ den ‘Feuerring der Venus’.» Sie geht davon aus, dass der Feuerring der Venus mit einer Zone zusammenfällt, in der besonders viel Plume-​Material aufstösst.

Es sei jedoch wichtig zu beachten, dass auf der Erde die Plattentektonik für die Lage und Dynamik des Feuerrings verantwortlich sei. Auf der Venus sei es vertikaler Hotspot-​Vulkanismus, der auf der Erde nur an wenigen Orten vorkomme.

Weshalb sich die Mantelplumes auf der Venus genau in solch einem Gürtel anordnen und was dies heisst in Bezug auf Prozesse, die sich tief im Inneren dieses Planeten abspielen, ist eine wichtige Frage. Diese könnte in künftigen Studien mit Computersimulationen im grossen Massstab angegangen werden, erklärt Gülcher.

Dichtezunahme des Krustenmaterials aufgrund der Phasenänderung von Basalt zu Eklogit. (Ill.: s. Veröffentlichung)

Grosse Rechenkapazität erforderlich

In ihren Modellen simulieren die Forschenden nur wenige hundert Kilometer des obersten Teils eines Mantelplumes. In Realität aber könnten solche Magmasäulen über 1000 Kilometer lang sein. «Die gesamte Länge zu simulieren, kommt aufgrund der erforderlichen Rechenkapazität nicht in Frage», sagt Gülcher. Nur schon die aktuellen Simulationen sind achtmal grösser als bisherige. Gerechnet wurden sie auf dem Euler-​Cluster der ETH.

Von ihren Erkenntnissen erhoffen sich die Planetenforschenden auch neue Einsichten darüber, wie Mantelplumes im Inneren der Erde funktionieren. Sie dürften verantwortlich sein für die Entstehung von Hotspot-​Vulkanismus wie er sich beim Hawaiianischen Inselarchipel äussert. Mantelplumes könnten zudem ein Auslöser für die auf der Erde beobachtete Plattentektonik gewesen sein, wie die Forschungsgruppe von Taras Gerya ebenfalls mit Hilfe von Simulationen aufzeigte. Wie damals erwähnt, könnte die Venus als Modell für die Prozesse dienen, die sich auf der frühen Erde abgespielt haben könnten.


Veröffentlichung: Gülcher A, et al. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nature Geoscience, online publiziert 20. Juli 2020. DOI: 10.1038/s41561-​020-0606-1

Quelle: off. Pm der ETH Zürich

Titelbildunterschrift: Der kreisrunde Berg im Vordergrund ist eine 500 Kilometer grosse Corona in der Galindo-​Region der Venus. Die dunklen Rechtecke sind ein Artefakt. (Foto: NASA/JPL/USGS)


Ähnliche Beiträge
Winzige Kristalle, zehntausend Mal dünner als ein menschliches Haar, können explosionsartige Vulkanausbrüche verursachen. Diesen überraschenden
In­sel­ket­ten wie jene von Ha­waii lie­gen über so­ge­nann­ten Hot­spots, an de­nen stän­dig hei­ßes Mag­ma em­por­quellt.
Numerische Modelle sind mittlerweile der Weg des Erfolges, wenn zur Untersuchung schwer erreichbarer Phänomene und
Neue Forschungen, die von der Universities Space Research Association (USRA) geleitet und nun in Science
Ein Forscherteam hat kürzlich einen Vulkanausbruch im Marianengraben im westlichen Pazifik dokumentiert, der etwa 4.500
The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.