Kollisionen im Sonnensystem: Bayreuther Forscher erklären die Entstehung von Stein-Eisen-Meteoriten

Print Friendly, PDF & Email
Share Button

Pallasite sind Stein-Eisen-Meteoriten und bekannt für ihre ungewöhnlichen, optisch attraktiven Strukturen. Ihre Herkunft war bislang umstritten. Forschern am Bayerischen Geoinstitut (BGI) der Universität Bayreuth ist es jetzt aber durch Hochdruck-Experimente gelungen, die Entstehung aller bekannten Pallasit-Arten zu simulieren und in die Geschichte des Sonnensystems einzuordnen. Dabei haben sie mit Wissenschaftlern der Technischen Universität München und der Royal Holloway University of London eng zusammengearbeitet. In der Zeitschrift „Earth and Planetary Science Letters” werden die neuen Erkenntnisse vorgestellt.

Wie die Forscher jetzt herausgefunden haben, stammen Pallasite aus Asteroidenkollisionen vor rund 4,5 Milliarden Jahren. Bei diesen Zusammenstößen hat sich Eisen aus dem jeweils kleineren Asteroiden mit dem olivinreichen Material im Mantel des größeren Asteroiden vermischt. Milliarden Jahre später wurden Teile dieser Materialmischung durch die Wucht eines weiteren Einschlags aus der Oberfläche des Asteroiden herausgesprengt und ins Weltall katapultiert. Einige davon sind schließlich auf der Erde eingeschlagen. Diese Entstehungsgeschichte erklärt die ungewöhnlichen Strukturen der Pallasite: Sie enthalten grün-braune Olivinkristalle, umgeben von Nickel und Eisen. 

In der Forschung wird die räumliche Anordnung verschiedener Materialien in einem Gestein und die daraus resultierenden Strukturen als Textur bezeichnet. Die Pallasite, die bisher auf der Erde gefunden und untersucht wurden, weisen eine sehr große Vielfalt von Texturen auf. „Mit unseren Forschungsarbeiten konnten wir erstmals alle in Pallasiten beobachteten Texturen im Labor reproduzieren. Dies zeigt beispielhaft, dass uns diese Meteoriten aufschlussreiche und auch unerwartete Einblicke in die Frühgeschichte unseres Sonnensystems bieten können. Wir wollen daher unsere Strukturuntersuchungen und chemischen Untersuchungen von Pallasit-Meteoriten am BGI fortsetzen – nicht zuletzt in den geochemischen Laboratorien, die in Kürze am BGI neu entstehen“, sagt Prof. Dr. Audrey Bouvier, Professorin für experimentelle Planetologie an der Universität Bayreuth. 

Die neuen Erkenntnisse sind aus Experimenten an zwei äußerst leistungsstarken Geräten hervorgegangen: der Hochdruck-Presse MAVO am Bayerischen Geoinstitut und der baugleichen Hochdruck-Presse SAPHiR. Diese wird zurzeit unter Mitwirkung von Prof. Dr. Hans Keppler vom BGI an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz der TU München aufgebaut. 

„Mit diesen Instrumenten können wir die Prozesse, die zur Entstehung von Meteoriten, Asteroiden oder Planeten geführt haben, sehr realitätsnah simulieren. Um die Entstehung von Pallasiten durch Asteroidenkollisionen erklären zu können, haben wir die bei diesen Prozessen herrschenden Druck und Temperaturverhältnisse nachgeahmt: Eisen- und olivinhaltige Proben wurden von uns einem Druck von einem Gigapascal (GPa) bei 1.300 Grad Celsius ausgesetzt. Die Formveränderungen und inneren Spannungen, die wir dabei an den Proben im Experiment beobachten konnten, haben wir dann mit den Texturen in den Pallasit-Meteoriten verglichen“, erklärt die Bayreuther Master-Studentin Danielle Silva Souza. Nach ihrem Bachelor-Abschluss in Geowissenschaften an der Bundesuniversität von Ouro Preto in Brasilien ist sie nach Bayreuth gekommen, um am BGI an experimentell ausgerichteten geowissenschaftlichen Projekten mitzuarbeiten. Hierzu zählen auch die geochemischen Untersuchungen an Pallasiten. „Das BGI bietet für diese Forschungsarbeiten exzellente Voraussetzungen“, sagt die Bayreuther Nachwuchs-Forscherin.


Veröffentlichung: Nicolas P. Walte, Giulio F. D. Solferino, Gregor J. Golabek, Danielle Silva Souza, Audrey Bouvier: Two-stage formation of pallasites and the evolution of their parent bodies revealed by deformation experiments. Earth and Planetary Science Letters (2020), Vol. 546, 116419. DOI: https://dx.doi.org/10.1016/j.epsl.2020.116419

Quelle: off. Pm der Universität Bayreuth

Titelbildunterschrift: Textur eines Pallasiten (Breite: 3,5 cm): Die braunen und gelbbraunen Bereiche enthalten Olivine, die in Eisen und Nickel eingebettet sind. Foto: Audrey Bouvier.


Ähnliche Beiträge
Lavatunnel auf Mond und Mars zeugen der vulkanischen Vergangenheit der beiden Himmelskörper unseres Sonnensystems. Könnten
Der Zwergplanet Ceres, der größte Körper im Asteroidengürtel, war bis vor eine Million Jahren Schauplatz
Was für viele zunächst wie Science-Fiction klingt, könnte in naher Zukunft bereits Realität werden. Wissenschaftler
ETH-​Forschende klassifizierten mithilfe von Computersimulationen die heutigen Aktivitäten von Coronae-​Strukturen auf der Oberfläche der Venus
Forschende unter der Leitung der Universität Warwick haben erstmals den freigelegten Kern eines Exoplaneten entdeckt,
The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.