Durch eine Vielzahl von Anpassungen haben Arthropoden, zu denen neben den Insekten auch Spinnen oder Krebstiere gehören, alle wichtigen Ökosysteme der Erde erobert und nehmen eine wichtige Rolle für das ökologische Gleichgewicht unseres Planeten ein. Doch was sind die genetischen Grundlagen für diesen evolutionären Erfolg? Dies hat jetzt ein internationales Forscherteam genauer untersucht und den evolutionären Ursprung wichtiger Anpassungen der letzten 500 Millionen Jahre zurückverfolgt.
Vor rund 700 Millionen Jahren erlebte die Erde die schwerste Kälteperiode ihrer Geschichte. Diese bedrohte einen Großteil des Lebens auf dem Planeten. Frühere Forschungen haben gezeigt, dass sauerstoffabhängiges Leben eventuell in Schmelzwasserpfützen auf der Eisoberfläche überlebt haben könnten. Diese Studie liefert jedoch neue Erkenntnisse über sauerstoffhaltige Meeresumgebungen und stellt sich erneut der Frage: Wie hat das Leben die schwerste Eiszeit der Erdgeschichte überlebt? Ein von der McGill University geführtes Forschungsteam hat den ersten direkten Beweis dafür gefunden, dass Gletscherschmelzwasser eine entscheidende Lebensader für Eukaryoten während des Snowball Earth-Events war. In dieser Zeit wurden die Ozeane vom lebensspendenden Sauerstoff abgeschnitten. Diese Frage hat die Wissenschaftler jahrelang verwirrt.
SNSB-Paläontologin Gertrud Rößner identifiziert eine bisher unerkannte ausgestorbene Hirschferkel-Art aus Pakistan durch die morphometrische Vermessung von fossilen Zähnen. Die Ergebnisse der Studie veröffentlichte sie kürzlich gemeinsam mit einem Kollegen in der paläontologischen Fachzeitschrift Historical Biology.
Senckenberg-Wissenschaftler Peter Königshof hat gemeinsam mit einem internationalen Team in Vietnam ein globales Aussterbeereignis an der Devon-Karbon-Grenze untersucht. Im Zuge dieses Ereignisses vor 359 Millionen Jahren starben 20 Prozent aller wirbellosen und 50 Prozent aller meeresbewohnenden Wirbeltiere aus. In der kürzlich im Fachjournal „Global und Planetary Change“ veröffentlichten Studie nennen die Autoren vulkanische Aktivität als Hauptursache der sogenannten „Hangenberg-Krise“.
Egal ob Würmer, Wale oder Menschen, praktisch alle Tiere auf der Erde haben einen symmetrischen Körperbau. Doch […]
Vor etwa 50 Millionen Jahren haben sich Wale und Delfine aus landlebenden Vorfahren entwickelt. Heute verbringen die luftatmenden Säugetiere ihr ganzes Leben im Meer. Dieser Wechsel vom Land zum Wasser war von tiefgreifenden Anpassungen an das Leben im Wasser begleitet. Welche Veränderungen in der DNA diesen Anpassungen zugrunde liegen, ist aber noch weitgehend ungeklärt. Daher haben Forscher an den Max-Planck-Instituten für molekulare Zellbiologie und Genetik und für Physik komplexer Systeme sowie am Zentrum für Systembiologie Dresden systematisch nach Genen gesucht, die bei den Vorfahren von Walen und Delfinen verloren gegangen sind. Das Forscherteam entdeckte insgesamt 85 Genverluste. Interessanterweise haben einige Genverluste den Walen wahrscheinlich geholfen, sich an ihre neue Umgebung anzupassen.
Tübinger Forschungsteam findet Hinweise auf eine früher offene Landschaft auf der Malaiischen Halbinsel, die Mensch und Tier den Weg auf die heutigen Inseln Indonesiens öffnete.
Das Leben ist einzigartig auf unserem Planeten. Oder etwa nicht? Im Mittelpunkt dieser Frage steht die Entstehung der Plattentektonik, die Sauerstoff und Wasser aus dem Erdinneren in die Atmosphäre transportierte und Berge und tiefe Ozeane bildete, in denen das Leben gedeihen konnte. Die geologische Aufzeichnung deutet darauf hin, dass dies vor drei bis zweieinhalb Milliarden Jahren geschah, aber die Aufzeichnung bleibt zu spärlich, um zu erklären, wie und warum dies geschah, so Dr. Fabio Capitanio, ein Forscher der Monash School of Earth, Atmosphere and Environment, dessen Arbeit gerade in der Geology und in der Earth and Planetary Science Letters veröffentlicht wurde.
Vor ungefähr 540 Millionen Jahren gab es einen riesigen Boom in der Artenvielfalt auf der Erde. Die ersten größeren Tiere entwickelten sich in der heutigen sogenannten kambrischen Explosion. In der folgenden Zeit entwickelten sich die Tiere und wurden größer. Parallel zur Entwicklung der Tiere sank der Sauerstoffgehalt in der Atmosphäre, was die Strahlung vorübergehend drosselte. Die anschließende Sauerstoffzufuhr und das Wachstum von Algen haben jedoch der Nahrungskette Energie zugeführt und die Explosion des Lebens in Gang gesetzt. In einer neuen wissenschaftlichen Studie haben Forscher des GLOBE Institute an der Fakultät für Gesundheits- und Medizinwissenschaften der Universität Kopenhagen nun festgestellt, dass die Tiere selbst wahrscheinlich zu einer Anpassung des Sauerstoffgehalts beigetragen und damit indirekt ihre eigene Entwicklung gesteuert haben.
Als der Asteroid, der die Dinosaurier auslöschte, auf den Planeten einschlug, setzte der Einschlag Wälder in Brand, löste Tsunamis aus und stieß so viel Schwefel in die Atmosphäre, dass er die Wärme der Sonne in der Atmosphäre blockierte. Dies führte zu einer massiven globalen Abkühlung, die letztlich zum Verhängnis und zum Aussterben der Dinosaurier und einem Großteil des damaligen Lebens führte. Nun konnten Forscher der University of Texas at Austin die ersten 24 Stunden des großen Sterbens rekonstruieren.