Asteroid in eiserner Rüstung

Share Button

Mineralogen aus Jena und Japan entdecken an Bodenproben des Asteroiden „Itokawa“ ein bislang unbekanntes Phänomen: Die Oberfläche des Himmelskörpers ist mit winzigen haarförmigen Kristallen aus Eisen überzogen. Wie diese entstanden sind und warum Asteroide ungewöhnlich arm an Schwefelverbindungen sein können, dafür liefert das Team eine Erklärung in der aktuellen Ausgabe von „Nature Communications“.

Itokawa wäre ein ziemlich durchschnittlicher erdnaher Asteroid: ein nur wenige hundert Meter im Durchmesser messender Geröllhaufen, der inmitten unzähliger anderer Himmelskörper die Sonne umrundet und dabei immer wieder die Bahn der Erde kreuzt. Wäre da nicht eine Sache, die Itokawa zu einem ganz und gar außergewöhnlichen Himmelskörper macht. Im Jahr 2005 bekam er Besuch von der Erde. Die japanische Raumfahrtagentur JAXA hatte die Sonde Hayabusa zu Itokawa geschickt, Bodenproben gesammelt und – erstmals in der Geschichte der Raumfahrt – diese sicher zur Erde zurück transportiert. 2010 ist die kostbare Fracht auf der Erde gelandet und wird seither intensiv erforscht.

Einem Team aus Japan und Jena ist es jetzt gelungen, einigen dieser winzigen Probenkörnchen ein bislang unentdecktes Geheimnis zu entlocken: Die Oberfläche der Staubkörnchen ist mit winzigen hauchdünnen Kristallen aus Eisen übersäht. Diese Beobachtung hat Prof. Dr. Falko Langenhorst und Dr. Dennis Harries von der Friedrich-Schiller-Universität Jena überrascht, hatten Forschungsteams aus aller Welt in den zurückliegenden zehn Jahren doch bereits ausgiebig Struktur und chemische Zusammensetzung der Staubteilchen von Itokawa untersucht – die Eisenhärchen waren bislang aber nicht aufgefallen. Erst der japanische Forscher Dr. Toru Matsumoto, der für ein Jahr als Gastwissenschaftler in der Arbeitsgruppe der Analytischen Mineralogie am Institut für Geowissenschaften arbeitet, konnte die Kristalle mittels hochauflösender Aufnahmen mit einem Transmissionselektronenmikroskop ausfindig machen.

Asteroid Itokawa, aufgenommen von der japanischen Raumsonde Hayabusa im Oktober 2005. (Foto: JAXA)

Sonnenwind lässt Himmelskörper verwittern

Spannend macht diese Entdeckung nicht allein die Tatsache, dass die Eisenhärchen, die inzwischen auch auf weiteren Partikeln das Asteroiden nachgewiesen wurden, bislang übersehen worden sind, sondern vor allem wie sie entstanden. „Diese Strukturen sind das Ergebnis kosmischer Einflüsse auf der Oberfläche des Asteroiden“, erläutert Falko Langenhorst. Neben Gesteinsbrocken treffen auch energiereiche Teilchen des Sonnenwindes auf die Asteroidenoberfläche, die dadurch verwittert. Ein wichtiger Bestandteil des Asteroiden ist das Mineral Troilit, in dem Eisen und Schwefel gebunden vorliegen. „Infolge der Weltraumverwitterung wird das Eisen aus dem Troilit freigesetzt und lagert sich in Form der jetzt entdeckten Nadeln auf der Oberfläche ab“, sagt der Jenaer Mineraloge. Der Schwefel aus dem Eisensulfid verflüchtigt sich wiederum in Form gasförmiger Schwefelverbindungen in das umgebende Vakuum.

Aus der Größe und Anzahl der detektierten Eisenkristalle konnten die Forscher zudem abschätzen, wie schnell der Asteroid den Schwefel verliert. „Der Prozess verläuft für kosmische Dimensionen unheimlich schnell“, macht Toru Matsumoto deutlich. Die von ihm analysierten Kristalle haben eine Länge von bis zu zweieinhalb Mikrometern, was etwa einem Fünfzigstel der Dicke eines menschlichen Haares entspricht. „Solche Größen haben die Härchen schon nach rund 1.000 Jahren erreicht“, so der Forscher von der Kyushu Universität in Fukuoka. Langfristig lasse sich die Analyse der Eisenkristalle nutzen, um die Verwitterungsprozesse auch auf anderen Himmelskörpern besser zu verstehen und ihr Alter zu bestimmen.

Dabei haben die Forscher schon ganz konkrete Objekte im Blick: Die Sonde OSIRIS-REx der NASA bereitet derzeit die Probenahme auf dem Asteroiden Bennu vor. Hayabusa2 der JAXA ist bereits auf dem Rückweg zur Erde. Die japanische Sonde hat im vergangenen Jahr den Asteroiden Ryugu besucht und wie auch bei Itokawa Staubteilchen eingesammelt. Ende 2020 sollen die Proben auf der Erde landen. Das internationale Team mit den Jenaer Mineralogen und Toru Matsumoto erwartet sie mit Spannung.


Veröffentlichung: Matsumoto T et al. Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nature Communications (2020), DOI: 10.1038/s41467-020-14758-3, https://www.nature.com/articles/s41467-020-14758-3

Quelle: off. Pm der Friedrich-Schiller-Universität Jena

Titelbildunterschrift: Mikroskopische Aufnahme in Falschfarben. (a) Eines der untersuchten Staubteilchen des Asteroiden Itokawa. Das Mineral Troilit (FeS, violett) ist umgeben von Silikat (grün). (b) Troilitoberfläche (violett) mit Eisenhärchen (blau). (c) Eisenkritall vergrößert.Foto: Toru Matsumoto


The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie besitzt ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Über Pia Gaupels

Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie besitzt ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert