Wie entstehen Hangrutschungen auf dem Mars?

Share Button

Die Beschaffenheit der Marsoberfläche ist Gegenstand von Untersuchungen, die sich vor Ort nicht immer einfach gestalten: Analog-Untersuchungen in Regionen auf der Erde, die den Bedingungen auf dem Mars nahekommen, lassen aber neue Schlüsse zu. Ein internationales Forschungsteam mit Beteiligung von Christian Köberl, Professor für Planetare Geologie und Impaktforschung an der Universität Wien, hat so auf der Basis von Untersuchungen in der Antarktis eine neue Hypothese über die Ursachen von Erdrutschen auf dem Mars entwickelt.

Um die Ursache von Hangrutschungen am Mars besser verstehen zu können, führte das Forschungsteam um Janice Bishop, Senior Research Scientist am SETI-Institut in Kalifornien, unter Beteiligung von Christian Köberl von der Universität Wien Analog-Untersuchungen auf der Erde durch. Die Sedimente in einer der kältesten und trockensten Regionen unseres Planeten, in den McMurdo Dry Valleys (Trockentälern) in der Antarktis, bieten sich als ideale Testumgebung an: Wie auf dem Mars ist die Oberfläche dort fast das ganze Jahr über trockenen Winden ausgesetzt.

Entwicklung der RSL-Merkmale im Palikir-Krater auf dem Mars, wie sie von der HiRISE-Kamera bei 6 Gelegenheiten während der Marsjahre 29-30 aufgenommen wurden. (Bildnachweis: NASA/JPL/University of Arizona)

Unterirdische Salze und schmelzendes Eis
Dabei zeigte sich, dass unter Permafrostbedingungen starke Salzkonzentrationen, zusammen mit der Ausbildung von dünnen Wasserfilmen, zur chemischen Verwitterung knapp unter der Oberfläche führen. Sulfate und Chlorsalze absorbieren in feinkörnigen Böden Wasser, dehnen sich aus, zerfließen, verursachen ein Absinken, bilden Krusten und zerstören die Oberflächen. So können sie auf diesen instabilen Oberflächen letztendlich Erdrutsche erzeugen.

“Das Vorhandensein erhöhter Konzentrationen von Sulfaten und Chloriden wenige Zentimeter unterhalb der rauen Oberflächenlandschaft im Wright Valley lässt darauf schließen, dass diese wasserbezogenen mineralogischen Assoziationen und damit verbundenen Prozesse auch auf dem Mars existieren und dort für Erdrutsche verantwortlich sein könnten”, so Christian Köberl.

“Unser Team geht davon aus, dass das Schmelzen von kleinen Eiskörnern im oberflächennahen Bodenbereich Änderungen an der Oberfläche verursacht, die sie anfällig für Staubstürme und Wind machen. Die dünnen Schichten aus schmelzendem Eis sind auf die Wechselwirkung zwischen unterirdischem Wassereis, Chlorsalzen und Sulfaten zurückzuführen; diese erzeugen eine Art flüssigkeitsähnlichen Schlamm, der die beobachteten Rutschungen auslöst” so der Forscher.

Schematische Darstellung von Mineral- und Bodenkörnern bei -50 bis -40 °C, wobei einige winzige Eiskristalle (blaue Schneeflocken) und einige flüssige Wassermoleküle (blaue Ovale) entlang der Oberfläche der Partikel (orange und braune Formen) vorhanden sind. (Grafik: Janice Bishop, SETI Institute)

Analoge Geländeuntersuchungen 
Untersuchungen auf der Erde wie in den Trockentälern der Antarktis, im Toten Meer in Israel und im Salar de Pajonales in der Atacama-Wüste haben gezeigt, dass Salze, wenn sie mit Gips oder Wasser im Untergrund interagieren, Störungen an der Oberfläche bis hin zu Kollapserscheinungen und Erdrutschungen verursachen. Die neue Theorie hilft nicht nur bei der Erklärung der geologischen und chemischen Prozesse auf dem Mars, sondern legt auch nahe, dass die Marsumgebung weiterhin dynamisch ist. Der Planet entwickelt sich also noch weiter und ist aktiv – eine wichtige Erkenntnis, die auch Auswirkungen auf die Astrobiologie und die zukünftige menschliche Erforschung des Roten Planeten hat. 

“Weiters ist das Potenzial für dünne Wasserfilme unter der Marsoberfläche in salzigen Permafrostgebieten auch für die Erforschung einer Bewohnbarkeit des Mars von Interesse. Diese Erkenntnisse sind außerdem ein wichtiges Beispiel dafür, dass man geologische Untersuchungen auf der Erde auf andere erdähnliche Planeten anwenden kann, und umgekehrt. Geologische Prozesse finden in ähnlicher Weise auf den verschiedensten Körpern unseres Sonnensystems statt”, so Köberl.


Veröffentlichung: J. L. Bishop et. al. Martian subsurface cryosalt expansion and collapse as trigger for landslides. Science Advances (2021) DOI: 10.1126/sciadv.abe4459

Quelle: off. Pm der Uni Wien

Titelbildunterschrift: HiRISE-Foto des Krupac-Kraters auf dem Mars mit Hangrutschungen. Foto: NASA / JPL / University of Arizona.


The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie besitzt ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Über Pia Gaupels

Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie besitzt ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert