Stabile Gashydrate lösen Hangrutschung aus

Veröffentlicht von
Share Button

Genau wie Lawinen an Land können Hangrutschungen unter Wasser verschiedene Ursachen haben. Immer wieder werden entsprechende Ereignisse mit instabilen Gashydraten im Meeresboden in Verbindung gebracht. Wissenschaftlerinnen und Wissenschaftler des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel, der Christian-Albrechts-Universität zu Kiel und des Alfred-Wegener-Instituts Helmholtz-Zentrum für Polar- und Meeresforschung haben jetzt Belege dafür gefunden, dass der Zusammenhang ein anderer sein könnte. Die Studie erscheint heute in der internationalen Fachzeitschrift Nature Communications.

Mitte der 1990er Jahre konnten unter anderem deutsche Forscher nachweisen, dass in den Kontinentalhängen am Rand aller Ozeane große Mengen an Gashydraten eingeschlossen sind. Diese festen, eisartigen Verbindungen aus Wasser und Gasen galten seitdem als eine Art Zement, der die Hänge unter Wasser festigt. Doch die Gashydrate sind nur bei hohem Druck und niedrigen Temperaturen stabil. Deshalb gibt es Überlegungen, ob steigende Wassertemperaturen die Hydrate auflösen und dabei auch Hangrutschungen und in deren Folge Tsunamis auslösen könnten. Dass viele fossile Rutschungen im Bereich von Gashydratlagerstätten liegen, nährt diese Vermutung.

Struktur von Gashaydraten. (Grafik: J. Greinert / GEOMAR)

Jetzt haben Forschende des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel zusammen mit Kollegen der Christian-Albrechts-Universität zu Kiel und des Alfred-Wegener-Instituts Helmholtz-Zentrum für Polar- und Meeresforschung Belege dafür gefunden, dass Gashydrate und Hangrutschungen tatsächlich ursächlich zusammenhängen können – aber ganz anders als bisher vermutet. „Unsere Daten zeigen, dass ausgerechnet stabile Gashydrate indirekt das Sediment über ihnen destabilisieren können“, sagt Dr. Judith Elger vom GEOMAR. Sie ist Erstautorin der Studie, die heute in der internationalen Fachzeitschrift Nature Communications erscheint.

Den Anstoß für die Untersuchung gab eine Ungereimtheit bei bisherigen Theorien, die schmelzende Gashydrate als Ursache von Hangrutschungen sehen. Denn die Wassertiefen stimmten nicht. „Wenn steigende Wassertemperaturen oder fallende Meeresspiegel Gashydrate destabilisieren, dann zuerst im oberen Bereich des Kontinentalhangs. Die Rutschungen, deren Spuren wir kennen, wurden aber alle tiefer ausgelöst“, erklärt Dr. Elger.

Um diesem Widerspruch aufzulösen, hat sich die Geophysikerin seismische Daten aus dem Gebiet der Hinlopen-Rutschung angesehen. Diese ereignete sich vor etwa 30.000 Jahren nördlich von Spitzbergens in 750 bis 2.200 Metern Wassertiefe. Mit diesen Daten hat das Team anschließend die Vorgänge im Meeresboden in einem Computermodell nachvollzogen.

Schematische Darstellung, wie stabile Gashydrate indirekt eine Hangrutschung auslösen können: Gas und Flüssigkeiten sammeln sich unter der Gashydratstabilitätszone (GHSZ) und sorgen für Überdruck. Wird er zu groß, bahnen sie sich einen eigenen Weg durch die Gasyhdrate Richtung Meeresboden. Dort können sie weichere Sedimentschichten destabilisieren und ins Rutschen bringen. (Elger et. al., 2018, Nature communications)

 

Dabei kam heraus, dass die Gashydrate eine feste, undurchlässige Schicht im Meeresboden bilden können. Darunter sammeln sich freies Gas und Flüssigkeiten. Es entsteht ein Überdruck unterhalb der Hydratschicht, bis diese nicht mehr standhält. Freies Gas und Flüssigkeiten steigen in den durch den Überdruck verursachten Rissen, die heute noch im Untergrund nachweisbar sind, schnell Richtung Meeresboden auf. Dort treffen sie auf ohnehin weniger stabiles Sediment und setzen es in Bewegung.
„Wir konnten zeigen, dass dieser Prozess im Fall der Hinlopen-Rutschung eine realistische Alternative zu anderen vermuteten Prozessen ist, völlig unabhängig von klimatischen Veränderungen. Es fehlen aber noch wichtige Informationen über das Verhalten von Sedimenten mit Gashydraten, um unsere Modelle zu verbessern“, sagt Dr. Elger.

Die Studie zeigt aber auf jeden Fall Zusammenhänge, die bisher bei der Suche nach Ursachen von Hangrutschungen nicht berücksichtigt wurden. „Weitere Studien, die seismische Daten und geotechnische Laborversuche kombinieren, müssen jetzt zeigen, ob auch an anderen historischen Rutschungen ähnliche Rissstrukturen im Meeresboden nachgewiesen werden können und ob es sich damit um ein verbreitetes Phänomen handelt“, so die Forscherin.

Veröffentlichung:
Elger, J., C. Berndt, L. Rüpke, S. Krastel, F. Gross, W. H. Geissler (2018): Submarine slope failure due to pipe structure formation. Nature Communications, http://dx.doi.org/10.1038/s41467-018-03176-1

Quelle: off. Pn des Geomar

Ähnliche Beiträge
Dramatische Entwicklung am Aletschgletscher dokumentiert: Weil sich das Eis so rasch zurückgezogen hat, ist ein
Die Princeton Seismologin Jessica Irving und ein internationales Team von Kollegen haben mit neuen Daten
Glasfaserkabel eignen sich zur Aufzeichnung von Erschütterungen des Untergrunds. Damit können die herkömmlichen Datenleitungen nicht
Zwischen ozeanischen Erdplatten steigt Magma auf, treibt die Platten auseinander, türmt hohe Unterwassergebirge auf und
Der Großraum Istanbul mit rund 15 Millionen Einwohnern gilt als besonders erdbebengefährdet. Um das Risiko
The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.