Voraussetzungen für Leben schon vor 3,5 Milliarden Jahren

Share Button

Mikrobielles Leben hatte auf unserem Planeten bereits vor 3,5 Milliarden Jahren die nötigen Rahmenbedingungen, um zu existieren. Zu dieser Erkenntnis kam ein Forschungsteam nach Untersuchungen mikroskopisch kleiner Flüssigkeitseinschlüsse in Bariumsulfat (Baryt) aus der Dresser Mine in Marble Bar, Australien. In ihrer Publikation „Ingredients for microbial life preserved in 3.5-billion-year-old fluid inclusions” legen die Forscher dar, dass es bereits zu diesem Zeitpunkt organische Kohlenstoffverbindungen gegeben hat, die als Nährstoffe für mikrobielles Leben dienen konnten.

An der im Fachmagazin „Nature Communications“ erschienenen Studie des Erstautors Helge Mißbach von der Universität Göttingen war auch Volker Lüders vom Deutschen GeoForschungsZentrum (GFZ) beteiligt. Er hat in der Sektion Organische Geochemie Kohlenstoff-Isotopenanalysen an Gasen in Flüssigkeitseinschlüssen durchgeführt. 

Flüssigkeitseinschlüsse zeigen Potenzial für urzeitliches Leben

Lüders bewertet die Resultate als überraschend, warnt aber davor, diese fehlzuinterpretieren: „Man darf die Studienergebnisse nicht als direkten Nachweis für frühes Leben verstehen“, sagt der GFZ-Forscher. Die Befunde an den 3,5 Milliarden Jahre alten Flüssigkeiten zeigten vielmehr, dass damals bereits Potenzial für urzeitliches Leben vorhanden war. Ob zu dieser Zeit daraus bereits tatsächlich Leben entstand, lässt sich nicht bestimmen. Anhand der Ergebnisse wisse man nun einen „Zeitpunkt, von dem wir sagen können, es wäre möglich gewesen“, erklärt Lüders. 

Australische Baryte als Geo-Archive

Flüssigkeitseinschlüsse in Mineralen sind mikroskopisch kleine Geoarchive für die Migration von heißen Lösungen und Gasen in der Erdkruste. Primäre Flüssigkeitseinschlüsse wurden direkt während des Mineralwachstums gebildet und liefern wichtige Hinweise über die Bedingungen, unter denen sie entstanden sind. Dazu gehören der Druck, die Temperatur und die Lösungszusammensetzung. Neben einer wässrigen Phase können Flüssigkeitseinschlüsse auch Gase enthalten, deren Chemie für Milliarden von Jahren bestehen bleiben kann. Die in dieser Studie untersuchten Flüssigkeitseinschlüsse stammen aus der Dresser Mine in Australien. Sie wurden während der Kristallisation von Bariumsulfat (Baryt) eingeschlossen. Das Forschungsteam hat sie umfassend auf ihre Bildungsbedingungen, Biosignaturen und Kohlenstoffisotope analysiert.

Im Zuge der Analysen stellte sich heraus, dass sie einen primordialen Stoffwechsel enthielten – und damit Energielieferanten für Leben. Die Ergebnisse von Lüders‘ Kohlenstoff-Isotopenanalyse lieferten dabei zusätzliche Hinweise auf unterschiedliche Kohlenstoffquellen. Während die gasreichen Einschlüsse von grauen Baryten Spuren von magmatischem, also anorganischem Kohlenstoff enthielten, konnten in den Fluideinschlüssen von schwarzen Baryten deutliche Hinweise auf eine organische Herkunft des Kohlenstoffs gefunden werden. 

Anschlussforschung ist möglich

„Die Studie kann hohe Wellen schlagen“, sagt Lüders. Denn organische Moleküle dieser Art wurden für Flüssigkeitseinschlüsse in archaischen Mineralen bislang noch nicht nachgewiesen. Zugleich jedoch sei die Studie nur ein erster Schritt. Lüders sagt: „Die immer höhere Empfindlichkeit der Messgeräte wird der Untersuchung von festen und flüssigen Mikroeinschlüssen in Mineralen neue Tore öffnen. Messungen von Biosignaturen und Isotopenverhältnissen dürften in naher Zukunft immer exakter werden.“


Veröffentlichung: Mißbach, H., Duda, JP., van den Kerkhof, A.M. et al. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nat Commun 12, 1101 (2021). https://doi.org/10.1038/s41467-021-21323-z

Quelle: off. Pm des GFZ Potsdam

Titelbildunterschrift: Gaseinschlüsse, die CO2 und CH4 (Methan) enthalten, wurden während des Kristallwachstums in Wirtsmineral (hier Quarz) eingeschlossen (Foto: Volker Lüders, GFZ)

The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.