“Diamantenregen” auf eisigen Riesenplaneten könnte häufiger vorkommen als bisher angenommen

Share Button

Was geht im Zentrum von Planeten wie Neptun und Uranus vor? Um das herauszufinden, hat ein internationales Team unter Leitung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der Universität Rostock und der französischen École Polytechnique eine dünne Folie aus simplem PET-Plastik mit einem Laser beschossen und das Geschehen mit intensiven Röntgenblitzen untersucht. Zum einen konnten die Forscher ihre frühere These bekräftigen, dass es wohl tatsächlich Diamanten im Inneren der Eisriesen am Rand unseres Sonnensystems regnet. Zum anderen könnte die Methode die Grundlage für ein Herstellungsverfahren von Nanodiamanten bilden, wie sie für hochempfindliche Quantensensoren benötigt werden.

Die Verhältnisse im Inneren von Eisplaneten wie Neptun und Uranus sind extrem: Es herrschen Temperaturen von mehreren tausend Grad Celsius, der Druck ist millionenfach größer als in der Erdatmosphäre. Dennoch lassen sich solche Zustände im Labor kurzzeitig simulieren: Starke Laserblitze treffen auf eine folienartige Materialprobe, erhitzen sie für einen Wimpernschlag auf bis zu 6000 Grad Celsius und erzeugen eine Schockwelle, die die Materie für einige Nanosekunden auf das Millionenfache des Atmosphärendrucks komprimiert. „Bislang haben wir solche Versuche mit Folien aus Kohlenwasserstoffen gemacht“, erläutert Dominik Kraus, Physiker am HZDR sowie Professor an der Universität Rostock. „Dabei konnten wir feststellen, dass sich unter dem Extremdruck winzige Diamanten bilden, sogenannte Nanodiamanten.“ 

Allerdings ließ sich mit diesen Folien das Planeteninnere bisher nur ansatzweise simulieren. Denn Eisplaneten enthalten nicht nur Kohlenstoff und Wasserstoff, sondern auch Unmengen Sauerstoff. Bei der Suche nach einem geeigneten Folienmaterial fiel die Wahl auf einen Allerweltsstoff: PET – jenem Kunststoff, aus dem simple Plastikflaschen bestehen. „Bei PET liegen Kohlenstoff, Wasserstoff und Sauerstoff in einem guten Verhältnis vor, um die Geschehnisse in Eisplaneten zu simulieren“, erklärt Dominik Kraus. Die Versuche führte das Team am SLAC National Accelerator Laboratory in Kalifornien durch. Dort steht mit der Linac Coherent Light Source (LCLS) ein starker, beschleunigerbasierter Röntgenlaser. Mit ihm lässt sich analysieren, was beim Auftreffen von intensiven Laserblitzen auf eine PET-Folie passiert. Dabei setzten die Fachleute zwei Messverfahren gleichzeitig ein: Per Röntgenbeugung prüften sie, ob sich Nanodiamanten bildeten. Und mit der sogenannten Kleinwinkelstreuung konnten sie beobachten, wie schnell und auf welche Größe die Diamanten wuchsen.

Nanodiamanten aus Flaschenplastik
(Grafik: Blaurock / HZDR)

Sauerstoff als wichtiger Helfer
Das Ergebnis: „Durch seinen Einfluss hat der Sauerstoff die Trennung von Kohlenstoff und Wasserstoff beschleunigt und damit die Entstehung der Nanodiamanten gefördert“, berichtet Dominik Kraus. „Dadurch konnten die Kohlenstoffatome besser zusammenfinden und Diamanten bilden.“ Das erhärtet die Vermutung, dass es im Inneren von Eisriesen buchstäblich Diamanten regnet. Die Resultate dürften nicht nur für Uranus und Neptun relevant sein, sondern auch für unzählige weitere Planeten in unserer Galaxis. Denn hielt man früher solche Eisriesen für rare Exoten, scheint mittlerweile klar, dass es sich um die häufigste Planetenform außerhalb des Sonnensystems handeln dürfte.

Außerdem stieß das Team auf einen weiteren Hinweis: Gemeinsam mit den Diamanten sollte auch Wasser entstehen – allerdings in einer ungewöhnlichen Variante: „Es sollte sich sogenanntes superionisches Wasser gebildet haben“, vermutet Kraus. „Dabei formen die Sauerstoffatome ein Kristallgitter, in dem sich Wasserstoffkerne frei bewegen.“ Da die Kerne elektrisch geladen sind, kann superionisches Wasser elektrische Ströme leiten und so zur Bildung des Magnetfelds der Eisriesen beitragen. Allerdings konnte die Arbeitsgruppe bei ihren Experimenten die Existenz von superionischem Wasser in der Mischung mit Diamanten noch nicht zweifelsfrei belegen. Das soll künftig in enger Zusammenarbeit mit der Universität Rostock am European XFEL in Hamburg geschehen, dem stärksten Röntgenlaser der Welt. Dort führt das HZDR das internationale Nutzerkonsortium HIBEF an, das ideale Bedingungen für solche Versuche bieten wird.

Präzisionsfabrik für Nanodiamanten

Neben diesen eher grundlegenden Erkenntnissen eröffnet das neue Experiment aber auch Perspektiven für eine technische Anwendung – die gezielte Herstellung von nanometerkleinen Diamanten. Bereits heute werden solche Nanodiamanten in Schleif- und Poliermitteln verwendet. Künftig sollen sie als hochempfindliche Quantensensoren, medizinische Kontrastmittel sowie effiziente Reaktionsbeschleuniger etwa zur Spaltung von CO2 dienen. „Bisher werden solche Diamanten hauptsächlich per Sprengstoff-Detonation hergestellt“, erläutert Kraus. „Mit Hilfe von Laserblitzen könnten sie sich künftig deutlich sauberer fertigen lassen.“ 

Die Vision: Ein Hochleistungslaser feuert zehnmal pro Sekunde Lichtblitze auf eine PET-Folie, die im Zehntel-Sekunden-Takt durch den Strahl gerastert wird. Die bei der Reaktion entstehenden Nanodiamanten fliegen wie Geschosse aus der Folie heraus und landen in einem Auffangbecken gefüllt mit Wasser. Dort werden sie abgebremst und können anschließend gefiltert und regelrecht geerntet werden. Der wesentliche Vorteil des Verfahrens gegenüber der Produktion per Sprengstoff: „Damit ließen sich Nanodiamanten gezielt maßschneidern, etwa was ihre Größe oder auch eine Dotierung mit Fremdatomen betrifft“, betont Dominik Kraus. „Denn mit dem Röntgenlaser besitzen wir ein Labor-Werkzeug, mit dem sich das Größenwachstum der Diamanten genau kontrollieren lässt.“


Veröffentlichung: Z. He, M. Rödel, J. Lütgert, A. Bergermann, M. Bethkenhagen, D. Chekrygina, T.E. Cowan, A. Descamps, D. Kraus: Diamond formation kinetics in shock-compressed C-H-O samples recorded by small-angle X-ray scattering and X-ray diffraction, in Science Advances, 2022 (DOI: 10.1126/sciadv.abo0617)

Quelle: off. Pm des Helmholtz-Zentrums Dresden-Rossendorf (HZDR)

Titelbildunterschrift: Bei der Untersuchung eines Materials, das der Zusammensetzung von Eisriesen noch ähnlicher ist, fanden die Forscher heraus, dass Sauerstoff die Bildung von Diamantregen fördert. Das Team fand auch Hinweise darauf, dass sich in Verbindung mit den Diamanten eine kürzlich entdeckte Wasserphase bilden könnte, die oft als “heißes, schwarzes Eis” bezeichnet wird. (Credit: Greg Stewart/SLAC National Accelerator Laboratory)


The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie besitzt ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht.