Diamanten tauchen in Zyklen aus dem Erdmantel auf

Share Button

Diamanten entstehen in über 150 Kilometern Tiefe im oberen Erdmantel. In einigen Bereichen der Erde werden sie bei vulkanischen Eruptionen eingebettet in Kimberlit-Magmen explosionsartig an die Erdoberfläche befördert. Dass diese Ereignisse rund 30 Millionen Jahre nach dem Auseinanderbrechen von Erdplatten auftreten, wie sie ablaufen und weshalb das auch in großen Entfernungen von den Bruchzonen passiert, erklärt eine aktuelle Studie im Fachmagazin Nature. Zu dem internationalen Forschungsteam gehören auch Sascha Brune und Anne Glerum vom Deutschen GeoForschungsZentrum (GFZ).

Hintergrund: Diamantentstehung und Vulkanausbrüche

Diamanten entstehen weit unter der Erdoberfläche in über 150 Kilometern Tiefe. Dort, im oberen Erdmantel, herrschen genau die richtigen Temperatur- und Druckbedingungen, um den Kohlenstoff zu Diamanten zu backen. Schmilzt nun ein Teil dieses Mantelgesteins und dringt über Spalten und Klüfte nach oben, werden immer wieder Vulkanausbrüche ausgelöst. In dem erkalteten Material, dem sogenannten Kimberlit, finden sich dann auch aus der Tiefe mitgerissene Diamanten. 

Bisherige Modelle können allerdings weder zufriedenstellend erklären, wie Kimberlit-Schmelzen entstehen und abrupt aus dem Erdmantel herausgelöst werden, noch dass und wie die Kimberlit-Eruptionen offensichtlich mit der grundlegenden Umstrukturierung der tektonischen Platten der Erde zusammenhängen.

Neues Modell zum Ablauf der Diamanten-Eruptionen: Die Rolle der Plattengrenzen

Einen neuen Ansatz stellt nun ein internationales Team um dem Erstautor Thomas Gernon, Professor für Geowissenschaften und Principal Research Fellow an der Universität Southampton (GB), vor, dem auch Sascha Brune, Leiter der GFZ-Sektion 2.5 „Geodynamische Modellierung“, und Anne Glerum, Wissenschaftlerin in der GFZ-Sektion 3.1 „Anorganische und Isotopengeochemie“, angehören.

Dem neuen Modell zufolge sind diese Prozesse im Erdmantel mit Vorgängen an der Grenze von tektonischen Platten verknüpft. Bevor eine Kontinentalplatte auseinanderbricht, dünnt sie sich im Laufe vieler Millionen Jahre aus, was als „Rifting“ bezeichnet wird. Dabei senkt sich die Erdoberfläche ab und bildet einen Grabenbruch wie das Rift Valley in Ostafrika. Irgendwann strömt Meerwasser ein, wie es beim Roten Meer der Fall ist. Gleichermaßen verändert sich die Unterseite der Erdplatte, und destabilisiert dabei das Umgebungsgestein der Diamanten. Stücke der Plattenunterseite sinken in den tiefen Erdmantel, während heißeres Gestein von unten in den freiwerdenden Raum einfließt, ähnlich zu dem Meerwasser an der Oberfläche. In der Folge kommt es zu Schmelzvorgängen: Das vorher zähplastische Gestein wird flüssig, bahnt sich seinen Weg nach oben und bringt dabei auch Diamanten an die Erdoberfläche.

Diamanten-Eruptionen im Rhythmus der Superkontinente

Thomas Gernon, Hauptautor der Studie, sagt: „Das Muster der Diamanten-Eruptionen ist zyklisch und folgt dem Rhythmus der Superkontinente, die sich im Laufe der Zeit – über hunderte von Millionen Jahren – wiederholt zusammenfinden und wieder aufbrechen. Bisher wussten wir jedoch nicht, welcher Prozess dazu führt, dass Diamanten plötzlich an die Erdoberfläche gebracht werden, nachdem sie Millionen oder Milliarden Jahre lang in 150 Kilometern Tiefe ruhten.“

Wie Kimberlit-Ausbrüche ins Innere der Kontinente wandern

Die Forscher fanden auch heraus, dass die Vulkanausbrüche mit Diamant-haltigem Kimberlit im Lauf der Zeit allmählich von den Kontinentalrändern in das Innere der Kontinente wandern, und zwar mit ähnlichen Raten in verschiedenen Kontinenten. Beim Auseinanderbrechen wird ein Teil der Kontinentalwurzel abgerissen und sinkt in den darunter liegenden Erdmantel ab, was eine Kettenreaktion ähnlicher Strömungsmuster im benachbarten Teil der Kontinentalwurzel auslöst. Sascha Brune vom GFZ sagt: „Diese Strömungen entlang der Unterseite von Erdplatten entfernen eine beträchtliche Menge an Gestein, das Dutzende von Kilometern dick ist. Die Kettenreaktion erreicht dabei letztlich auch Regionen der Kontinente, die in großer Entfernung von Riftzonen liegen.“ 

In ihrer Studie schreiben die Autoren, dass ähnliche Prozesse auch bei steckengebliebenen Bruchvorgängen stattgefunden haben. 

Insgesamt könnten ihre Erkenntnisse helfen, bislang unentdeckte Kimberlit-Vorkommen und die Diamanten darin aufzuspüren.


Veröffentlichung: Thomas M. Gernon, Stephen M. Jones, Sascha Brune, Anne Glerum et al., Kimberlite ascent by rift-driven disruption of cratonic mantle keels, Nature, DOI: 10.1038/s41586-023-06193-3
https://www.nature.com/articles/s41586-023-06193-3

Quelle: off. PM des GFZ Potsdam

Titelbildunterschrift: (Links): Diamantenmine von oben, (Mitte): Ein Diamant in seinem Wirtsgestein Kimberlit. Richard Brown, (Rechts): Diamant in seinem Wirtsgestein Kimberlit aus der Finch Mine in Südafrika


The following two tabs change content below.

Pia Gaupels

Gründerin bei GeoHorizon
Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie besitzt ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Über Pia Gaupels

Pia Gaupels, *86, Bibliotheksinformationsstudium an der TH Köln von 2007-2010. Studiert seit 2014 an der Universität Münster Geowissenschaften. Der Schwerpunkt liegt auf Planetare Geologie und Geoinformationswissenschaften. 2015 gründete Sie die Seite Geohorizon. Sie besitzt ausgeprägte Fähigkeiten in der Bild- und Videobearbeitung und arbeitet seit 2018 wieder als Bibliothekarin.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert